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Abstract5

Subgrid-scale (SGS) velocity variations result in grid-scale sea-surface flux enhance-6

ments that must be parameterized in weather and climate models. Traditional param-7

eterizations are deterministic in that they assign a unique value of the SGS veloc-8

ity flux enhancement to any given configuration of the resolved state. In this study,9

we assess the statistics of SGS velocity flux enhancement over a range of averaging10

scales (as a proxy for varying model resolution) through systematic coarse-graining11

of a convection-permitting atmospheric model simulation over the Indian Ocean and12

West Pacific Warm Pool. Conditioning the statistics of the SGS velocity flux enhance-13

ment on (1) the fluxes associated with the resolved winds, and (2) the precipitation14

rate, we find that the lack of a separation between “resolved” and “unresolved” scales15

results in a distribution of flux enhancements for each configuration of the resolved16

state. That is, the SGS velocity flux enhancement should be represented stochastically17

rather than deterministically. The spatial and temporal statistics of the SGS velocity18

flux enhancement are investigated by using basic descriptive statistics and through a19

fit to an anisotropic space-time covariance structure. Potential spatial inhomogeneities20

of the statistics of the SGS velocity flux enhancement are investigated through regional21

analysis, although because of the relatively short duration of the simulation (9 days)22

distinguishing true inhomogeneity from sampling variability is difficult. Perspectives23

for the implementation of such a stochastic parameterization in weather and climate24

models are discussed.25
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1 Introduction26

Near-surface winds exert an important control on exchanges of mass, energy, and momen-27

tum between the atmosphere and the underlying surface. In weather and climate models,28

air-sea exchanges are generally expressed as a combination of the concentration difference29

between the atmosphere and the sea surface and a function of the near-surface wind speed30

s (conventionally at the anemometer height of 10 m):31

surface flux of X = ρacx(s)s
[
Xs −Xa

]
(1)

In Eq. (1), Xs and Xa are respectively the “concentrations” of quantity X (in units of X per32

unit mass of air) at the surface and at the anemometer height, ρa is the surface air density,33

and cx(s) is a non-dimensional function of the wind speed (and potentially other variables34

such as near-surface stratification). The exchange coefficient cx(s) depends on wind speed35

through, for instance, changes in surface roughness, or bubble injection/spray production36

by breaking surface waves (e.g., Drennan, 2006; Edson, 2008; Garbe et al., 2014). The37

overbars in Eq. (1) denote time averaging (typically over windows of ∼ 10 min) separating38

the turbulent and Reynolds-averaged variations. Although based on theoretical foundations,39

these parameterizations are generally largely empirical. Furthermore, although they are40

averaged in time, the expressions relate fluxes at a single point in space to the atmospheric41

state (and specifically the wind speed) at that location.42

Numerical weather and climate models have finite spatial resolution, and require surface43

fluxes averaged over model gridboxes. Through the dependence of cs on s, the bulk flux44

parameterization is generally a nonlinear function of wind speed. Thus the flux averaged45

over a region of space (such as a gridbox) does not equal the flux that would be computed46

from the averaged wind speed. Furthermore, the gridbox-averaged wind speed itself is not47

available from the weather or climate model. Rather, the models directly simulate the48
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gridbox-averages of the horizontal wind components. Denoting spatial averaging by angle49

brackets and the wind vector field by u = (u, v) we have50

〈s〉 = 〈|u|〉 ≥ | 〈u〉 |, (2)

The inequality in Eq. (2), which follows mathematically from Jensen’s inequality and the51

fact that wind speed is a convex function of the wind components, results physically from the52

existence of subgrid-scale (SGS) velocity variations and is generally most important under53

conditions of weak mean winds. A similar inequality holds for the time averaging used to54

separate the turbulent and Reynolds-averaged parts of the flow (e.g., Beljaars, 1994; Mahrt55

and Sun, 1995).56

For many fluxes (e.g. momentum, gases, and particles), the function that sets the de-57

pendency of flux on wind speed, h(s) = cx(s)s, is found to be convex (h′′ ≥ 0). It follows58

that59

convexity of cx(s)s︷ ︸︸ ︷∣∣∣〈flux(s)
〉∣∣∣ ≥ ∣∣∣flux

(
〈s〉
)∣∣∣ ≥ ∣∣∣flux

(
|〈u〉|

)∣∣∣︸ ︷︷ ︸
SGS velocity variations

. (3)

where the first inequality follows again from Jensen’s inequality applied to the function h,60

while the second follows from inequality (2). The spatially and temporally averaged flux61

(the left-hand quantity in inequality (3)) is what is desired, while the flux computed from62

the norm of the space-time mean of the wind vector (the quantity on the right of (3)) is63

what is directly available from the resolved state in models.64

The fact that space-time-averaged fluxes exceed the fluxes computed from the space-65

time-averaged wind vector has been recognized for many years, and a number of studies66

have considered ways of parameterizing this difference (e.g., Godfrey and Beljaars, 1991;67

Mahrt and Sun, 1995; Vickers and Esbensen, 1998; Redelsperger et al., 2000; Williams,68

2001; Zeng et al., 2002). A standard approach accounts for the difference between 〈s〉 and69
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|〈u〉| due to SGS velocity variations through a SGS velocity flux enhancement term:70

〈s〉
2

= |〈u〉|2 + s2
SGS. (4)

Standard parameterizations of sSGS account for surface flux enhancement due to disorganized71

near-surface SGS flow associated with shallow and deep convection:72

s2
SGS =

(
β〈w∗〉

)2

+ g
(
〈P 〉
)
, (5)

where 〈w∗〉 is the free convective velocity scale determined by the resolved surface buoy-73

ancy flux and 〈P 〉 is the gridbox-averaged precipitation rate. The coefficient β ∼ 1 and the74

function g
(
〈P 〉
)

have typically been determined empirically from field measurements and75

cloud-resolving model simulations. Mahrt and Sun (1995) replaced g
(
〈P 〉
)

with a term that76

represented all mesoscale contributions to the area-mean flux (not just those associated with77

convective precipitation). The observationally based study of Vickers and Esbensen (1998)78

parameterized sSGS from observations taken under fair weather conditions. Redelsperger79

et al. (2000) and Williams (2001) demonstrated the importance of the contribution of deep80

convection (represented by precipitation) to observed subgrid-scale velocity variations. Pa-81

rameterization of the contribution of boundary-layer eddies and deep convection to surface82

flux enhancement was also considered by Zeng et al. (2002), using results from 1 km × 1 km83

simulations of a cloud resolving model (CRM) on a 512 km × 512 km domain in the tropical84

North Atlantic. Studying the dependence of SGS flux enhancements on averaging scale,85

Mahrt and Sun (1995),Vickers and Esbensen (1998), and Zeng et al. (2002) all found that86

the corrections become larger for coarser resolutions and proposed power-law expressions for87

the dependences. In all these studies, deterministic parameterizations of the subgrid-scale88

velocity flux enhancement were obtained by empirical fits to data. The physical significance89

of the scatter of these data around the parameterization curves was not addressed.90
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Another approach to accounting for SGS velocity variations is to explicitly model these91

through an assumed parametric probability distribution conditioned on resolved scales (e.g.,92

Cakmur et al., 2004; Capps and Zender, 2008; Ridley et al., 2013; Zhang et al., 2016). While93

the parameterizations considered in these studies are probabilistic, they are still determinis-94

tic. The probability distributions employed are used to compute statistical moments across95

the gridbox, rather than to generate a sequence of random values.96

Deterministic parameterizations of subgrid-scale processes, in which a unique configura-97

tion of the resolved variables is associated with a unique value of the parameterized tendency,98

are only theoretically justified in the presence of a large separation between resolved and un-99

resolved scales. In the absence of such a scale separation, a distribution of parameterized100

tendencies will be associated with each configuration of the resolved state, and the math-101

ematical form of the parameterization will be stochastic (see the recent review by Berner102

et al., 2017). The data scatter around the curves corresponding to deterministic parame-103

terizations of SGS velocity flux enhancement demonstrates the existence of such stochastic104

fluctuations (particularly in the CRM-based study of Zeng et al., 2002, in which the devi-105

ations clearly cannot be attributed to measurement error). As is detailed in the review of106

Berner et al. (2017), the importance of explicitly accounting for stochastic variations around107

a deterministic parameterization has been demonstrated in a number of studies on weather,108

seasonal, and climate time scales. In the specific context of air-sea fluxes, Williams (2012)109

demonstrated that including stochastic flux fluctuations has an effect not just on model110

variability, but on its mean state (through rectified deepening of the simulated mixed layer).111

Including stochastic parameterizations into climate models also improves the representation112

of processes sensitive to air-sea coupling, such as the El Niño-Southern Oscillation (Chris-113

tensen et al., 2017; Yang et al., 2019), through improving the high-frequency atmospheric114

response to changes in sea surface temperature.115

In this study, we revisit the question of SGS flux enhancement using a nine-day simu-116
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lation of a convection-permitting (4 km resolution) atmospheric model on a large tropical117

domain (20◦S to 20◦N, from East Africa to 180◦W). By systematically coarse-graining the118

high-resolution simulation, we are able to analyze the relationship between “true” gridbox-119

averaged fluxes and the fluxes computed from the gridbox-mean vector wind (the “resolved120

flux”). We extend previous analyses not only by estimating the deterministic dependence121

of the true fluxes on resolved variables, but also by modelling the residuals around this122

empirical fit as a space-time random field. We emphasize the distinction between such a pa-123

rameterization and the probabilistic but deterministic ones of Cakmur et al. (2004); Capps124

and Zender (2008); Ridley et al. (2013), and Zhang et al. (2016). The parameterization we125

develop samples from a random space-time-field at each time step: it is explicitly stochastic.126

Rather than explicitly develop a parameterization of sSGS, we instead consider the differ-127

ence between the true and resolved fluxes as a random variable conditioned on the resolved128

flux and the precipitation rate. While this approach is more abstract, it has the benefit of129

being able to simultaneously account for the differences in resolved and true fluxes due to130

SGS velocity variations and the nonlinearity of the dependence of the flux on wind speed.131

Parameterizations constructed in terms of sSGS account only for the first of these two issues.132

This study is organized as follows. A description of the high-resolution simulation used133

in our analysis is presented in Section 2. Section 3 presents the results of the analysis. A134

discussion and conclusions are presented in Section 4.135

2 Model Description136

Ideally, subgrid-scale wind variability statistics would be measured from observational data137

sets. However, our analysis requires data of a sufficiently high spatial resolution over a138

large domain, for which a suitable observational data set is not available. Instead, we use an139

existing high-resolution model simulation as our “truth”, produced as part of the UK Natural140

Environment Research Council (NERC) “Cascade” project (Pearson et al., 2010; Love et al.,141
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2011; Holloway et al., 2012). The Cascade project produced convection-permitting, cloud142

system-resolving simulations with resolutions ranging from 1.5 km to 12 km over several143

large tropical domains using the UK Met Office’s Unified Model (MetUM).144

For this paper, we use the Cascade 4 km resolution tropical Indo-Pacific Warm Pool145

integration. This Cascade simulation has proven useful for assessing stochastic parameter-146

ization schemes in other coarse-graining studies (Christensen, 2018). For full details of the147

simulation, see Holloway et al. (2012). In summary, the simulation was produced by using148

the limited-area MetUM version 7.1 (Davies et al., 2005), covering the domain 20oS–20oN,149

42◦–177oE. The model is semi-Lagrangian and non-hydrostatic. The model has 70 terrain-150

following hybrid vertical levels, with a variable vertical resolution ranging from tens of meters151

in the boundary layer to 250 m in the free troposphere, and with the model top at 40 km.152

The time step was 30 s. Initial conditions were specified from the ECMWF operational153

analysis. The 4 km simulation formed one of a hierarchy of simulations. First, a 12 km154

parametrized convection simulation was produced over a domain 1o larger in each direction,155

with lateral boundary conditions relaxed to the ECMWF operational analysis. The lat-156

eral boundary conditions in the 4 km simulation were specified from the 12 km simulation,157

through a nudged rim of 8 model grid points.158

The 4 km resolution simulation is “convection permitting”. The Gregory and Rowntree159

(1990) convection scheme is adapted such that at large Convectively Available Potential160

Energy (CAPE) values the convection scheme is effectively turned off, allowing the model’s161

dynamical equations to represent strong convective events. The convection scheme is active162

only for weakly unstable situations. The chosen simulation uses Smagorinsky subgrid mixing163

in the horizontal and vertical dimensions. The simulation begins on 6 April 2009 and spans164

10 days, chosen as a case study of an active Madden-Julian oscillation (MJO) event. The165

data are stored at full resolution in space and once an hour in time. We discard the first day166

of simulation, because Holloway et al. (2012) demonstrated a strong spin-up of the simulation167
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over this period.168

Thorough validation of the Cascade simulation has been reported by Holloway et al.169

(2012, 2013, 2015). The simulation is shown to produce a realistic MJO, including realistic170

convective organization, MJO strength, and propagation speed (Holloway et al., 2013). This171

is likely because the model accurately captures fundamental convective processes, including172

a realistic vertical heating structure (Holloway et al., 2015), realistic generation of eddy173

available potential energy (Holloway et al., 2013), improved profiles of moist static energy174

and saturation moist static energy compared to simulations with parameterized convection175

(Holloway et al., 2012), and a precipitation distribution that is similar to that diagnosed176

from Tropical Rainfall Measuring Mission (TRMM) observations (Holloway et al., 2012).177

The model also has a realistic representation of vertical and zonal wind speeds compared178

with ECMWF operational analysis, although regions of large-scale ascent are less confined179

than in observations (Holloway et al., 2013).180

Figure 1 presents maps of the mean and standard deviation of the wind speed at the181

base 4 km× 4 km resolution. Large-scale structure in the mean wind speed field across the182

domain is evident, with a particular contrast between high wind speeds in the equatorward183

flanks of the subtropical highs in the Southern Indian, North Pacific, and South Pacific184

oceans; and relatively small wind speeds in the equatorial band and Northern Indian Ocean.185

The wind speed standard deviation field displays more localized regions of relatively large186

values. Maps of the 50th and 95th percentiles of precipitation rate (Figure 1) also show187

considerable spatial heterogeneity. In particular, there are large regions of the domain in188

which the median precipitation rate is 0 mm/day; a precipitation rate of zero is also the 95th189

percentile in the Arabian Sea. When interpreting these and subsequent figures, one must190

remember that the simulation is of quite short duration. We expect that sampling variations191

will contribute to spatio-temporal variations of statistics.192
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3 Results193

In this study, we focus on the effects of spatial averaging on air-sea fluxes computed from194

bulk formulae (i.e., Eq. 1). As such, all fields we consider are assumed to be Reynolds195

averaged. This assumption is also consistent with the parameterized nature of the model196

used to produce the simulations that we analyze. For the rest of the study, we will no longer197

use an overbar to denote time averages.198

Rather than focusing on expressions for specific fluxes (such as water vapor, sensible199

heat, gases, or aerosols), we consider a generic power-law form for the dependence of flux on200

wind speed. Furthermore, our focus is on subgrid-scale variations in winds, so we will not201

consider the explicit dependence of fluxes on other state variables (such as the dependence202

of the exchange coefficient cx(s) on near-surface stability through the Obukhov length). We203

therefore take as a simplified nondimensional representation of air-sea flux:204

Fn =

(
s

s0

)n
, (6)

where s0 = 1 ms−1 is a speed scale. Scaling the wind speed dependence in this way facilitates205

comparisons of the nondimensional flux F for different values of the exponent n. Note that206

for n = 1, the flux function is linear in the wind speed and the difference between true and207

resolved fluxes results only from the difference between 〈s〉 and | 〈u〉 |.208

The power-law dependence of fluxes on wind speed assumed here is a simplifying ap-209

proximation. Neglecting the wind speed dependence of the exchange coefficients cX and210

the effect of surface currents, atmospheric boundary layer theory predicts values of n = 1211

for heat and water vapour fluxes and n = 2 for momentum fluxes (e.g. Drennan, 2006).212

When sea-state dependence of exchange coefficients is parameterized in terms of local wind213

speed, these functional dependencies are changed (and may not be polynomial). A range of214

empirically-based values of n have been reported for gases (e.g. Fig. 2.10 of Garbe et al.,215
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2014), with variations depending on factors such as how fluxes are influenced by bubble in-216

jection beneath breaking waves. Relatively high values of n are often used for aerosol fluxes,217

which are strongly affected by the production of spray in whitecaps (e.g. the value of 3.41218

used for sea salt in Zhang et al., 2016). For illustrative purposes, we consider the values219

n = 1, 2, and 3 in this study.220

True fluxes averaged over a “gridbox” domain of area N × N (with N in degrees) are221

then defined as222

F
(T )
N,n =

〈(
s

s0

)n〉
N

. (7)

As the focus of this study is air-sea fluxes, gridboxes at any coarsening scale containing land223

points are excluded from the analysis. Estimates of the probability density function (pdf)224

of log10

(
F

(T )
n

)
computed from the raw 4 km resolution model output for n = 1, 2, and 3225

are presented in Figure 2 (left column). The flux distributions move to larger values as n226

increases.227

The resolved flux (that is, the flux that would be computed from the gridbox-mean vector228

wind (〈u〉N , 〈v〉N)) is defined as229

F
(R)
N,n =


√
〈u〉2N + 〈v〉2N

s0

n

. (8)

For n ≥ 1, we know that F
(T )
N,n ≥ F

(R)
N,n (with equality holding only if n = 1 and in the absence230

of SGS velocity variations). Because the difference between true and resolved fluxes varies231

over orders of magnitude, our analysis will focus on the log-10 error process:232

εN,n = log10

(
F

(T )
N,n − F

(R)
N,n

)
. (9)

The pdfs of F
(T )
n are all positively skewed (Figure 2; this fact is somewhat obscured by233

the logarithmic scaling). The resolved fluxes are also positively skewed (not shown). Positive234

10



skewness results in the mean flux exceeding the most likely value, and provides occasional235

large magnitude perturbations which are physically realistic and can potentially improve236

ensemble spread in a forecast setting. It is important that the parameterized error process237

10εN,n respects this skewness. In fact, we show in the next section that the distribution of εN,n238

is approximately Gaussian so the difference between true and resolved fluxes is lognormal and239

therefore positively skewed. The Gaussianity of the log-10 error process is also of practical240

importance for generating realizations (particularly in the multivariate setting when the error241

is considered as a space-time random field). It is interesting to note that other stochastic242

parameterizations have proposed the use of positively skewed univariate distributions for the243

stochastic perturbations (Craig and Cohen, 2006; Ollinaho et al., 2017).244

3.1 Whole domain analysis245

We first study the log-10 error process εN,n using wind speeds from across the entire domain.246

Estimates of the pdfs of εN,n for N = 0.125◦, 0.25◦, 0.5◦, 1◦, 2◦, and 4◦ and n = 1, 2 and247

3 are shown in Figure 2 (center column). For all values of n, the distributions of εN,n are248

unimodal such that the most likely value increases with averaging scale N : larger averaging249

scales correspond to larger average differences between true and resolved fluxes. In addition,250

the values of the log-10 error generally increase for larger n. For the smallest coarsening251

scales considered, the errors F
(T )
N,n − F

(R)
N,n are generally orders of magnitude smaller than the252

true or resolved fluxes. As the coarsening scale increases, the range of typical error values253

becomes comparable to the range of typical flux values. In contrast, the distributions of254

εN,n become narrower as N increases. Larger averaging areas result in more averaging of255

SGS fluctuations and a reduction of the standard deviation of εN,n, denoted by std(εN,n).256

Consistent with the absence of a spectral gap in SGS velocity variations, the most likely error257

becomes smaller, but the need for stochastic corrections becomes larger as N is reduced from258

coarser to finer resolution.259
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As a measure of the practical importance of accounting for the difference between F
(T )
N,n260

and F
(R)
N,n, we consider the probability of the relative error F

(T )
N,n/F

(R)
N,n − 1 exceeding 10% as261

a function of the quantiles of resolved flux (Figure 2, right column). Across all resolutions262

and flux exponents, the probability of the relative error exceeding this threshold decreases263

with increasing F
(R)
N,n: relative errors are generally larger for smaller fluxes. The probability264

of exceeding the 10% relative error threshold also increases with increases of both N and265

n. For a resolution of N = 1◦ typical of a contemporary general circulation model (GCM),266

the relative errors in the bottom quartile of fluxes exceed 10% at least 10% of the time for267

n = 1, 35% of the time for n = 2, and 60% of the time for n = 3.268

3.1.1 Distribution of εN,n conditioned on resolved fluxes269

Developing an empirical parameterization of εN,n requires conditioning this quantity on270

resolved variables. We first study the dependence of the log-10 error process on the resolved271

flux. Probability distributions of εN,n conditioned on F
(R)
N,n for N = 1◦ are presented in272

the left column of Figure 3. The spreads of these conditional distributions around the273

conditional means represent variations in the difference between true and resolved fluxes that274

cannot be accounted for by the resolved flux alone. While the spreads of the conditional275

distributions are similar for all three values of n considered, there are evident differences276

in the deterministic dependence of ε1◦,n on F
(R)
1◦,n. For n = 1, the median of ε1◦,1 decreases277

with F
(R)
1◦,1: the absolute errors are smaller for larger values of the resolved flux. There is278

little dependence of median (ε1◦,2) on resolved flux for n = 2, while for n = 3, median (ε1◦,3)279

increases with resolved flux (errors are larger for larger fluxes).280

These general features of the conditional dependence of median (εN,n) on F
(R)
N,n are found281

for all coarsening scales considered (Figure 3, central column). Consistent with the behavior282

of the relative error, the median of εN,n increases with coarsening scale: coarser grids result283

in larger differences between resolved and true fluxes for all values of F
(R)
N,n. In contrast, the284
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spread of the distribution of the log-10 error process decreases with coarsening scale (Figure285

3, right column): more averaging results in a narrower distribution. While the interquartile286

range (iqr) of εN,n clearly depends on F
(R)
N,n, this dependence is weaker than that of the median287

log-10 error (for n = 1 and n = 3).288

To account for the deterministic dependence of εN,n on F
(R)
N,n, we construct a polynomial289

regression model:290

εN,n =
K∑
k=0

(AN,n)k

[
log10

(
F

(R)
N,n

)]k
+ ζN,n. (10)

From inspection, we determined that a reasonable fit is obtained for cubic regression, namely291

K = 3. The results are not strongly sensitive to the value selected for K; qualitatively similar292

results were obtained for K = 1 (not shown). The residual process ζN,n is that part of the293

log-10 error process that cannot be accounted for deterministically by the resolved flux and294

must be represented stochastically or by further conditioning on other state variables. As we295

will see in the next section, we can account for some of the variability of ζN,n by conditioning296

on precipitation rate. Values of (AN,n)k=1,...,K for N = 0.25◦ and N = 1◦ are presented in297

Table 1.298

Inspection of the pdfs of ζ1◦,n conditioned on F
(R)
1◦,n (Figure 4, left column) demonstrates299

that the regression model Eq. (10) has accounted for most of the deterministic dependence300

of ε1◦,n on the resolved flux. This fact is also true for the other coarsening scales considered301

(not shown). Quantile-quantile plots of ζN,n against a normal distribution (Figure 4, center302

column) demonstrate that while the distribution of the residual process ζN,n is not exactly303

Gaussian, deviations from Gaussianity are generally modest. In general, ζN,n becomes more304

non-Gaussian with increasing exponent n.305

By construction, the iqr of ζN,n conditioned on F
(R)
N,n is the same as that of εN,n. Returning306

to Figure 3, we can see that for each value of the exponent n, changes in N affect the overall307

value of iqr (ζN,n) more than the shape of the dependence on F
(R)
N,n. Almost linear behavior in308

log-log plots of the unconditional iqr (ζN,n) against N (Figure 4, right column, inset) implies309
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that the iqr of ζN,n can be well approximated by a power-law dependence on resolution:310

iqr (ζN,n) ' γnN
αn . (11)

Values of αn, γn estimated from linear regression of ln (iqr (ζN,n)) on lnN are presented in311

Table 2. We note that these parameters depend only weakly on n and that this dependence312

is not systematic. Rescaling ζN,n according to Eq. (11),313

ζ̂N,n =
ζN,n
γnNαn

, (12)

results in the curves of the conditional interquartile range iqr
(
ζ̂N,n|F (R)

N,n

)
largely collapsing314

on single curves for each n (Figure 4, right column). Agreement among the rescaled iqr315

value is generally poorest for smaller values of the resolved flux (possibly due to sampling316

variability since relatively few data fall in this range). Overall, these results indicate that317

the resolution dependence of the scale N of the explicitly stochastic part of εN,n can be well318

approximated by a power law.319

The spatial patterns of the temporal mean and standard deviation of the residuals ζN,2320

are shown in Figure 5 (right column) for N = 0.25◦ and N = 1◦. Spatial structure is evident321

in both fields, although spatial variations are smoother and less pronounced at coarsening322

scale N = 1◦ (second and fourth rows). The stochastic variability of the field is weaker323

at coarsening scale N = 1◦, as discussed earlier. Because of the short (9-day) duration of324

the simulation, we are unable to determine to what extent these structures represent true325

spatial nonhomogeneity in the residual field and to what extent they result from sampling326

variability.327

The results demonstrate that by using velocity information alone, the log-10 error εN,n328

can be approximated by a Gaussian random variable with a mean that depends on the329

resolved flux F
(R)
N,n and a variance that is independent of the resolved flux but that varies as330
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a power law in “resolution” N .331

3.1.2 Conditioning the residual process ζN,n on the precipitation rate332

In addition to intrinsic indeterminacy due to the lack of a scale separation in the velocity333

field, variability of ζN,n can result from variations in other physically relevant quantities not334

accounted for in the regression model Eq. (10). Previous studies have shown a relationship335

between SGS flux enhancement and convective precipitation (e.g., Redelsperger et al., 2000;336

Williams, 2001; Zhang et al., 2016), resulting from disorganized mesoscale surface flows337

associated with moist convection. The 4 km resolution of the model simulation we are338

considering is at the edge of being convection-permitting. As such, modelled precipitation339

contains contributions from both resolved and parameterized convection. These resolved340

and parameterized precipitation fields are available separately, and the relative contribution341

of both to the total precipitation rate can be determined. Above a threshold precipitation342

rate of about 0.6 mm/day, all of the modelled precipitation is associated with resolved343

processes (not shown). Since the strongest relationship between ζN,n and precipitation rate344

P is found above this threshold (Figure 6, left column), in the following calculations we will345

not distinguish between precipitation derived from resolved or parameterized motions.346

The pdf of ζN,n conditioned on P for N = 0.25◦ shows a relatively weak dependence for347

P . 0.1 mm/day and a steady increase with P above this value (Figure 6, left column). Such348

a transition indicates a systematic contribution to SGS flux enhancements of disorganized349

velocity fluctuations associated with deep convection. The transition from relatively weak to350

strong dependence moves to larger values of P and becomes less abrupt for larger coarsening351

scales. On larger coarsening scales, the sharpness of the transition is smoothed out because352

the averaging areas will contain regions of larger and smaller precipitation rates. The slope353

of the dependence of median(ζN,2) on P for large P is about the same for all coarsening354

scales. The breadth of the conditional distributions systematically decreases with increasing355
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coarsening scale. Again, more averaging results in smaller fluctuations around the mean.356

In the same way that we obtained ζN,n as the residual of a regression of εN,n on log10

(
F

(R)
N,n

)
,357

we represent the deterministic dependence of ζN,n on P through a regression model on P 1/4:358

ζN,n =
L∑
l=0

(BN,n)l P
l/4 + ψN,n. (13)

The fourth-root transformation of P was determined empirically through inspection of the359

dependence of the median of ζN,n conditional on P (not shown). In the calculation of these360

regression coefficients, values of P = 0 mm/day were neglected (since they represent a point361

probability mass at this particular value). Plots of the regression model with L = 4 for362

N = 0.25◦, 1◦, and 2◦ are shown in Figure 6. The residual ψN,n is that part of the error363

process that depends neither on the resolved flux nor on the precipitation rate and that364

must be represented as explicitly stochastic in the absence of further conditioning. The365

sequential conditioning of εN,n first on F
(R)
N,n and then on P is justified by the absence of366

a strong statistical relationship between resolved flux and precipitation rate (not shown).367

Values of the coefficients (BN,n) for N = 0.25◦ and N = 1◦ are presented in Table 1.368

Quantile-quantile plots of ψN,n against a normal distribution (Figure 6, center column)369

show that except for large values of the coarsening scale and exponent the distribution of ψN,n370

does not deviate substantially from Gaussian. The deviations that are present are somewhat371

larger than we found for ζN,n, perhaps because of the simple form of the regression Eq. (13)372

does not capture all of the deterministic dependence of ζN,n on P .373

As was the case for ζN,n, the dependence of the unconditional iqr of ψN,n on coarsening374

scale N can be approximated as a power law:375

iqr (ψN,n) ' µnN
λn (14)

(Figure 6, right column, inset). Estimated values of µn and λn (obtained from regressing376
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ln (iqr (ψN,n)) on lnN) are given in Table 2. As was the case with γn and αn, the dependence377

of µn and λn on n is weak and not systematic. Interquartile ranges of ψN,n rescaled by this378

power law,379

ψ̂N,n =
ψN,n
µnNλn

, (15)

and conditioned on P , collapse to a reasonable approximation on a single curve for each n380

(Figure 6, right column). While iqr
(
ψ̂N,n|P

)
does show systematic dependence on P , the381

variations around a value of 1 are sufficiently small that it is a reasonable first approximation382

to model this quantity as a constant. Furthermore, this figure clearly shows that the iqr of383

ψ̂N,n conditioned on P depends only weakly on the value of the exponent n. The fact that384

the values of µn are smaller than γn is a result of the reduction of the spread in ψN,n relative385

to ζN,n because of the further conditioning on P .386

Maps of the time-mean and standard deviation of the residuals ψN,2 are shown in Figure387

5 for N = 0.25◦ and N = 1◦. The statistics of ψN,n show much less spatial structure than388

of the ones of ζN,n, particularly for the standard deviation and at coarser graining-scale389

(N = 1◦). This fact indicates that much of the spatial structure of ζN,n is inherited from390

the precipitation field. The most pronounced features of mean(ψN,n) are the negative values391

in the Indian Ocean, east of Australia, and on the eastern boundary of the domain, and392

the positive values around the maritime continent and the Northwestern coast of Australia.393

Overall, the use of the precipitation field significantly improves the spatial homogeneity of394

the residuals.395

Using data from across the analysis domain, we conclude that the difference between the396

true and resolved fluxes can be modelled as a lognormal distributed variable, with a median397

that depends on the value of the resolved flux and the precipitation rate and an iqr that is398

to a first approximation independent of F
(R)
N,n, P , and n, and that depends on the coarsening399

scale through a simple power law.400
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3.1.3 Spatial and temporal correlation structure of ζN,n and ψN,n401

So far, we have considered only pointwise (marginal) statistics of the error εN,n and the402

residuals ζN,n and ψN,n. Since the residuals at nearby times and spatial locations may not403

be independent, it is appropriate to treat ζN,n and ψN,n as space-time random processes.404

Basic descriptive characterizations of the temporal and spatial structure of these processes405

are provided by autocorrelation functions in space and time.406

Plots of the temporal autocorrelation functions (acf) of ζN,2 for lags of up to 48 h,407

composited across all points in the model domain, show that on average the memory of the408

residual process increases with coarsening scale (Figure 7, upper left). For example, the409

value of the acf falls below e−1 in about 3 hours for N = 0.25◦ and 7 hours for N = 2◦. On410

top of the overall decay of correlations, the acf shows a clear diurnal periodicity.411

Conditioning ζN,n on the precipitation rate reduces both the autocorrelation decay timescale412

and the amplitude of the diurnal cycle in the spatial composite acf of the residuals ψN,n (Fig-413

ure 7, upper right). These changes are consistent with having accounted deterministically414

for the contribution to SGS velocity variations from organized convective motion associated415

with precipitation.416

Temporal autocorrelation functions at individual spatial locations display considerable417

variation around the composites shown in the upper panels of Figure 7. The lower panels418

of this figure show the ζN,2 and ψN,2 acf composites for N = 0.25◦ and N = 1◦, as well as419

the interdecile range across all spatial locations. While the spatial spread of the acf of ψN,2420

is slightly smaller than that of ζN,2, both acfs show substantial spatial variations (although421

the confidence intervals corresponding to a null hypothesis of zero correlation coefficient are422

broad because of the relatively few degrees of freedom, particularly if the serial dependence423

of the time series is accounted for). The acf decay length scales increase slightly with n (not424

shown).425

Composites of the spatial correlation function of ζN,2 for N = 0.25◦, 1◦, and 2◦ (Figure 8,426
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upper row) were obtained by averaging the estimated spatial correlation functions centred at427

a range of different base locations across the domain. The spatial correlation functions are428

evidently anisotropic, with decay lengthscales in the zonal that are larger than those in the429

meridional. This anisotropy and the values of the correlation length scales tend to increase430

at coarser averaging scales. Similar behavior is seen for the spatial correlation function of431

ψN,2 (Figure 8, second row), although the correlation length scales of ψN,2 are smaller than432

those of ζN,2. As was the case for the temporal dependence structure, we find that removing433

the deterministic dependence on precipitation results in a residual field that is more local434

in space. While spatial correlation scales increase slightly with increases in n (not shown),435

results similar to those shown in Figure 8 are found for n = 1 and n = 3.436

We now consider variations of the spatial correlation function across the domain. For437

each base point x, the spatial autocorrelation function results in a different map. Since a438

complete characterization of the spatial correlation structures of ζN,n and ψN,n is therefore439

not practical, we adopt the following approach. For N = 1◦, the spatial correlation field440

across the entire domain is computed at each of a set of base points on a coarse 4◦× 4◦ grid.441

Around each base point, a contour is drawn corresponding to a squared correlation value of442

0.5 for the spatial correlation field with that base point. Within such a contour around any443

base point, the squared spatial correlation values are larger than 0.5. The resulting maps444

(Figure 8, third and fourth rows) give some evidence of variations of the spatial correlation445

functions of ζ1◦,2 and ψ1◦,2 across the domain. In particular, regions of relatively large446

correlation lengthscales for ζ1◦,2 are found in the Arabian Sea and Bay of Bengal, as well447

as in a band extending from the Horn of Africa to west of Australia. Similar features are448

seen in the spatial correlation structure of ψ1◦,2, although the variations across the domain449

are less pronounced, and no atypical structure is seen in the Bay of Bengal. Broadly similar450

behavior is found for different coarsening scales N and flux exponents n (not shown).451

From the perspective of developing stochastic parameterizations of SGS flux enhance-452
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ments, in the following section we propose a statistical model that embeds the pointwise453

and space-time characteristics of εN,n presented above. This statistical framework provides454

a complementary quantification of features described above (spatio-temporal dynamics and455

marginal distributions) and also allows generation of realistic space-time samples of the456

SGS flux enhancement. A Gaussian process is used here to model the space-time residual457

processes ζN,n and ψN,n. Gaussian processes are tractable stochastic processes in a multidi-458

mensional context (space-time in our case) and the choice of Gaussian marginal distribution459

is supported by Figures 4 and 6. Since Gaussian processes are characterized by their first460

and second moments only and the mean of the residuals does not need to be accounted for,461

we only consider the specification of the space-time covariance structure in the following.462

3.1.4 Fitting spatio-temporal covariance structures463

In order to quantify the spatio-temporal dynamics and the spatial anisotropy observed in464

Figures 7 and 8, as well as the dependence on the coarsening scales, parametric anisotropic465

spatio-temporal covariance structures have been fit locally for each of the two residual pro-466

cesses ζN,n and ψN,n for various coarsening scales N .467

Spatio-temporal covariance model The ellipsoidal contour lines present in the observed468

spatial correlation (Figure 8) suggest the use of an anisotropic correlation model with differ-469

ent dependence in the meridional and zonal directions determined respectively by parameters470

θ1 and θ2. For simplicity, we assume that the semimajor and semiminor axes of the correla-471

tion align with the zonal and meridional directions. We also include temporal dependence472

scale θ3 in the correlation structure. The commonly used power exponential correlation is473

considered with a 3D-anisotropic distance for the space-time coordinates, and is fit to the474

data:475

K(l, l′, t, t′) = σ exp(−d(l, l′, t, t′)γ) + δIl=l′,t=t′ (16)
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with the space-time 3D-distance d(l, l′, t, t′) =

√(
x−x′
θ1

)2

+
(
y−y′
θ2

)2

+
(
t−t′
θ3

)2

. The param-476

eters θ1, θ2, θ3, σ, γ, and α are positive real numbers estimated by a least-squares method477

described below, and x, y and t respectively represent the latitude, longitude and temporal478

coordinates. For more flexibility in the correlation decay, the distance exponent γ ∈]0, 2] is479

estimated as a parameter of the covariance model. A nugget δ > 0 is added to the covariance480

to capture local variance that is not accounted for in the parametric exponential part of the481

model Eqn. (16).482

Estimation of the local covariance structure A moving-window framework is used483

to estimate the spatial variations of the covariance structure (as in Haas, 1990; Kuusela484

and Stein, 2017). More specifically, the whole domain is sub-divided into smaller regions485

of size 400 km×400 km. Within each window, stationarity is assumed, and the proposed486

covariance model Eq. (16) is fit independently to the residuals ζN,n and ψN,n. In order to487

ensure continuity, the windows overlap by 40 km.488

Figures 9a, 9b, 9c, 10, and 11 respectively show maps of the estimated values of the489

parameters θ1, θ2, θ3, γ, and δ. Parameters are depicted for both processes ζN,n and ψN,n,490

and for the two coarsening scales N = 0.25◦ and N = 1◦. Spatially heterogeneous structure491

is evident in the maps of the estimates of θ1, θ2, and θ3, as expected given the large size492

of the domain and the limited temporal duration of the simulation. As observed in the493

empirical correlation structure (Figure 8), the parameters estimated from ψN,n exhibit more494

homogeneity across the domain, shorter spatial length scales, and less anisotropy (similar495

ranges of values for θ1 and θ2) than those of ζN,n. Again, we see that the precipitation field496

explains much of the spatio-temporal structure of the error process εN,n. Zonal correlation497

elongation (larger values of θ2 than θ1) is evident for both coarsening scales considered. This498

anisotropy tends to be slightly stronger at coarser scales than finer ones. As indicated by499

the composite spatial and temporal correlation structures (Figures 7 and 8), the spatial and500
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temporal scales θ1, θ2 and θ3 are longer for coarser averaging scales . The larger scales of501

space and time variations of the error process εN,n when N is large results from the averaging502

out of smaller scales.503

Figure 10 shows estimates of the parameter γ that determines the smoothness of the field.504

This parameter also shows evidence of spatial heterogeneity. The parameter value is larger505

when the precipitation is not regressed out, which is another indication that the precipitation506

results in localized spatial structure in the error process εN,n, resulting in a less structured and507

less smooth residual process. In contrast with the other parameters considered, conditioning508

on precipitation and varying the coarsening scales have less influence on the intensity of this509

parameter.510

In Figure 11, the ratio of the nugget δ and the variance of the error εN,n shows that511

the nugget parameter tends to have slightly less importance in the overall variance when512

the precipitation is regressed out. In that case, the residual fields present less unexplained513

information that cannot be captured by the proposed parametric covariance with a single514

decay scale in each direction.515

Some regions of the maps display atypical behaviors, such as the Arabian Sea and the516

Southeastern part of the Indian Ocean, where the correlation structure is not influenced517

by the precipitation field. These behaviors are expected because precipitation was almost518

absent in those regions during the simulation time.519

Simulating the error process In order to assess the quality of the statistical models we520

have developed for εN,n, we generated samples of ζ1◦,2 and ψ1◦,2 from a Gaussian distribution521

with zero mean and a covariance specified by the estimated version of (16). The choice of522

a Gaussian distribution is justified by the quantile-quantile plots shown in Figures 4 and 6.523

Samples of the error process ε1◦,2 were then constructed via Eq. (10) and (13).524

Figure 12 shows sample time series of the “true” error process and its simulated samples525

at an arbitrary location for both models Eq. (10) and (13). While both models capture the526
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range of variations of ε1◦,2 reasonably well, structure is evident in the log10-error process that527

is captured by Eq. (13) but not by Eq. (10). In particular, the large sustained increase in528

ε1◦,2 starting on 11 April is captured by the model including precipitation rate as a regressor,529

but not by the model based only on the resolved flux. The benefit of conditioning on P is530

evident from this result. Consistent with the results of Section 3.1.2, the spread of the531

ensemble of simulations around ε1◦,2 is smaller for the model Eq. (13) than for Eq. (10):532

including precipitation as a regressor improves the resolution (sharpness) of the ensemble533

forecast. The statistical consistency between the observed error process and its samples is534

further explored through rank histograms at a single location in Figure 12. When a perfect535

match exists between the distributions of observations and samples, the rank histogram is536

expected to be uniform. We observe that the use of precipitation in the regression (lower537

panel) provides a better statistical calibration than does the regression based on the resolved538

fluxes only (upper panel). The fact that the rank histogram is not flat for either model reflects539

that the statistical model does not exactly fit the statistics of either residual process.540

The simulated time series also capture the true temporal autocorrelation structure of541

ε1◦,2 (Figure 13). The broader range of acf curves for ε1◦,2 constructed from realizations of542

ζ1◦,2 than from realizations of ψ1◦,2 is consistent with the latter being more constrained by543

resolved variables (which are the same among all realizations). We note that the correlation544

values for the shortest time lags tend to be underestimated by the proposed models.545

Figure 14 depicts maps of the mean square error (MSE) between the “true” error process546

ε1◦,2 and the simulated samples. The overall magnitude of the MSE is smaller for the model547

Eq. (13) than for Eq. (10). Moreover, the former model shows a weaker spatial structure548

due to the use of the precipitation information. The total MSE is decomposed into its549

squared bias and centered MSE components to assess the respective contributions of the mean550

features and of the fluctuations of the fields (Taylor, 2001). The squared bias contribution551

is significantly less than the difference in variability, indicating that both proposed models552
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capture the global mean of the error process reasonably well. However, the bias term exhibits553

more spatial structure than does the centered MSE, indicating that the proposed models554

capture well the structure of the stochastic variability of the error process. Including the555

precipitation field as a predictor improves the ability of the statistical model to account for556

the mean and fluctuations over the domain, particularly accounting for much of the structure557

in the squared bias term. Including further predictors might be able to reduce the squared558

bias term further, particularly around the Arabian Sea and the Southeast Indian Ocean.559

3.2 Local domain analysis560

Because of the relatively short duration of the simulation we are considering, some of the561

apparent spatial non-stationarity in the temporal and spatial autocorrelation functions may562

result from sampling variability. For example, an animation of the surface wind field over563

the simulation period (not shown) shows the migration of a strong cyclone from the Arabian564

Sea to the Bay of Bengal; such a circulation feature is not observed to occur elsewhere in565

the domain in this nine-day period. Nevertheless, the potential for spatially non-stationary566

structure motivates repeating the analysis of the relationships between εN,n, F
(R)
N,n, and P567

in different subregions of the model domain. Furthermore, previous empirical studies of568

SGS flux enhancement have considered either observations or model simulations in spatial569

domains much smaller than the one we study. We therefore re-examine our analysis in model570

subdomains.571

In order to examine regional variations in ζN,n and ψN,n, regression Eqs. (10) and (13)572

were fit separately on three subdomains (the Western Pacific, Arabian Sea, Southern Indian573

Ocean) depicted on Figure 1. Similarities are evident among the statistical properties of the574

residuals ζN,n and ψN,n in the subregions, in terms of marginal distributions (Figure 15),575

spatial correlation (Figure 16), and temporal structure (not shown). For the most part, we576

find that coarser averaging scales result in larger departures of the residuals from normality.577
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Consistent with the global analysis, spatial correlations at coarser resolutions appear stronger578

than the ones at finer resolutions.579

However, we also note differences in statistical features between these different regions.580

As previously observed, the Arabian Sea has atypical characteristics, especially in terms of581

spatial and temporal dynamics. The spatial correlation scales of ζN,n and ψN,n are longer582

than in the other two subdomains. The absence of precipitation in this area during the583

period of the model simulation (Figure 1) is likely responsible for this variant behavior.584

Given the short temporal amount of data, it is difficult to distinguish sampling variability585

from true spatial heterogeneity in the fields. However, the very low precipitation rates over586

large parts of the model domain (lower than long-term climatological values) do indicate587

that the limited temporal duration of the simulation is an important factor for the spatial588

structure.589

4 Discussion and Conclusions590

In this study, we have considered the empirical parameterization of the subgrid-scale velocity591

enhancement of spatially-averaged sea surface fluxes in weather and climate models. Using592

output from a relatively high-resolution, convection-permitting model simulation, we have593

shown that the SGS flux enhancement is not a deterministic function of the resolved state.594

Considering a range of different coarsening scales and flux exponents, and regressing the dif-595

ferences between the true and resolved fluxes on (nonlinearly transformed) resolved flux and596

precipitation rates, we have obtained residual fields characterizing the essentially stochastic597

nature of the SGS flux enhancement. The final model that we propose takes the lognormal598

form599

F
(T )
N,n = F

(R)
N,n + 10εN,n (17)
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with600

εN,n =
K∑
k=0

(AN,n)k

[
log10

(
F

(R)
N,n

)]k
+

L∑
l=0

(BN,n)l P
l/4 + ψN,n, (18)

where ψN,n is a Gaussian space-time field with a variance that scales as a power law of601

the coarsening scale N . The residual field ψN,n has been shown to be correlated in space602

and time, such that increases in N result in increases of both the spatial and temporal603

correlation decay scales. Modelling the statistics of ψN,n as a function of coarsening scale N604

is an important step in allowing this parameterization to be scale aware.605

Space-time Gaussian process models have been fit through the estimation of parametric606

covariances. In order to account for potential spatial inhomogeneity, covariances were fit607

in a set of overlapping moving windows. This estimation provides insights into the space-608

time characteristics of the residual fields: we were able to better quantify the spatial and609

temporal correlation ranges across coarsening scales and across the domain, and to assess the610

spatial anisotropy of the fields. Furthermore, this framework provides a space-time sampling611

distribution that could be used in future implementations.612

In this study we have treated a 4 km simulation as ‘truth’, since observational data do613

not exist at a high-enough resolution over such a large spatio-temporal domain. Because614

of the realism of the simulation (Holloway et al., 2012, 2013, 2015), the results of this615

study are a good first indication of the statistics of sub-grid scale fluxes. Furthermore,616

the relatively large precipitation rates which have the strongest deterministic relationship617

with the error process εN,n (Figure 6) are associated with resolved dynamics rather than618

parameterized convection. Nevertheless, details of the proposed model, such as the precise619

values of the regression coefficients, could change if a different model simulation were coarse620

grained. A further limitation of the study is the restricted spatial domain and length of the621

simulation: the statistics of SGS fluxes could vary depending on region of the globe and622

meteorological conditions. A follow up study is planned which will apply these techniques623

to a different dataset that covers a larger space-time domain to assess the generality of the624
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parameterization.625

Because the 4 km resolution of the model is still relatively coarse and the model equations626

are Reynolds averaged, this analysis does not account for those contributions to SGS velocity627

flux enhancement that are associated with the model’s existing gustiness parameterization628

(Walters et al., 2017). Since the main goal of this analysis is to demonstrate the importance629

of explicitly accounting for the stochasticity of the parameterization, the fact that not all630

SGS velocity variations are accounted for is not a critical limitation. We expect that if631

output from higher-resolution observations or model output were used, the magnitude of632

stochastic fluctuations around the deterministic parameterization would increase.633

To construct an empirical parameterization of SGS flux enhancements, we have used the634

resolved flux and precipitation rate as deterministic predictors of the error process εN,n. It is635

possible that εN,n may depend on other modelled quantities and that by including these in the636

regression model we would further reduce the stochasticity of our parameterization. For ex-637

ample, the dependence of the exchange coefficient cx(s) on sea surface temperature (through,638

e.g., changes in near-surface stability) has been neglected. Furthermore, the dependence of639

the error process on resolved variables may depend on the specific parameterization schemes640

used in the model. Further investigation of these questions is an interesting direction of641

future study.642

Following standard practice (e.g., Williams, 2001), we have neglected the dependence643

between variations in air density, wind speed, and air-sea concentration difference that can644

affect area-averaged fluxes (Eq. 1). Furthermore, our parameterization is based on the gen-645

eral resolved flux rather than specifically the surface heat flux (through the free convective646

scale) as in standard gustiness parameterizations (e.g., Beljaars, 1994; Mahrt and Sun, 1995;647

Williams, 2001). While our approach has the advantage of not requiring an iterative calcula-648

tion of fluxes, it is further removed from the basic boundary-layer physics used in justifying649

expressions such as Eq. (5). Moreover, many choices regarding the structure of the statis-650
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tical model (such as the fourth-root transformation of precipitation rate, and the number651

of terms K and L in the resolved flux and precipitation rate regressions) were determined652

through experimentation rather than systematic optimization. A more systematic and ob-653

jective approach to optimizing the values of these quantities should be considered in future654

research. Similarly, the consideration of alternative formulations of the statistical model Eq.655

(18), in terms of both the predictor fields chosen and the model architecture, is an interesting656

direction of future study. The development of physically based parameterizations (such as657

that of Williams, 2001) rather than empirically based ones is also a potentially important658

direction of research. Finally, repeating this analysis with longer time series on a larger659

spatial domain would allow a better determination of spatial and temporal heterogeneities660

in the statistics of SGS flux enhancements.661

The goal of this study has been to demonstrate (via a systematic coarse-graining anal-662

ysis) the fundamentally stochastic nature of the dependence of area-averaged fluxes on the663

resolved state and to characterize the structure of the stochastic space-time fields needed to664

parameterize this dependence. This analysis demonstrated the existence of spatial and tem-665

poral dependence in the stochastic parameterization and provided empirical evidence for the666

inclusion of such correlations in stochastic parameterization schemes (as opposed to treating667

this structure as a pragmatic solution to improve ensemble spread, see, e.g., Leutbecher et al.,668

2017). This analysis also highlighted the resolution dependency of such spatio-temporal cor-669

relations, which is not currently included in operational stochastic schemes. A future study670

will report on the result of implementing and testing such a stochastic sea surface flux pa-671

rameterization in weather and climate models.672
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n N (AN,n)0 (AN,n)1 (AN,n)2 (AN,n)3 (BN,n)0 (BN,n)1 (BN,n)2 (BN,n)3 (BN,n)4

1 0.25◦ -1.37 -0.93 -0.09 -0.12 -0.14 0.77 -0.08 -0.02 0.004
2 0.25◦ -0.75 0.03 -0.015 -0.03 -0.14 0.78 -0.11 -0.01 0.003
3 0.25◦ -0.37 0.31 0.12 -0.01 -0.14 0.80 -0.12 -0.008 0.003
1 1.0◦ -0.65 -0.72 -0.23 -0.20 -0.28 0.73 -0.22 0.04 -0.003
2 1.0◦ -0.06 0.10 -0.01 -0.05 -0.29 0.75 -0.25 0.05 -0.003
3 1.0◦ 0.37 0.31 0.02 -0.02 -0.29 0.78 -0.26 0.05 -0.003

Table 1: Estimated regression coefficients for the models Eqn. (10) and Eqn. (13) for
coarsening scales N = 0.25◦ and N = 1◦.
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n γn αn µn λn
1 0.63 -0.21 0.45 -0.34
2 0.59 -0.19 0.42 -0.31
3 0.60 -0.18 0.43 -0.31

Table 2: Coefficients of the scaling relationships Eq. (11) and (15) relating the interquartile
range of ζN,n (γn, αn) and ψN,n (µn, λn) to coarsening resolution N .
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Figure 1: Mean and standard deviation of the simulated wind speed (upper panels) and 50th
and 95th percentiles of precipitation rate (lower panels) at the base 4 km× 4 km resolution
of the simulation. White areas in the precipitation plots correspond to zero precipitation
rates. The white boxes in the mean wind-speed panel delimit the subregions considered in
Section 3.2.
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Figure 2: Left column: estimated pdfs of the true flux F
(T )
n without coarse-graining. Center

column: estimated pdfs of the log-10 error process εN,n for a range of averaging scales N .
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exponents n = 1, 2 and 3.
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(R)
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estimate of the probability density function of ε1◦,n conditional on F
(R)
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scale N = 1◦. Center column: medians of εN,n conditioned on F
(R)
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scales N . Right column: interquartile ranges of εN,n conditioned on F
(R)
N,n for a range of

coarsening scales N . The color scheme indicating N is as in the right column of Figure 2.
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Figure 4: Statistics of the residual process ζN,n (Eq. 10) conditioned on the resolved flux

F
(R)
N,n for n = 1 (upper row), n = 2 (middle row), and n = 3 (lower row). Left column: kernel

density estimates of the pdf of ζ1◦,n conditioned on F
(R)
1◦,n for a coarsening scale N = 1◦.

Center column: quantile-quantile plots of ζN,n and a normal distribution for a range of
coarsening scales N . The 1:1 line is indicated in black. Right column: interquartile range
of ζ̂N,n = ζN,n/ (γnN

αn). The coefficients αn, γn are determined from a regression fit of
log10 (iqr(ζN,n)) to log10(N) (inset). In the center and right columns, the color scheme
indicating N is as in the right column of Figure 2.
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Figure 5: Mean (upper rows) and standard deviation (lower rows) of the residuals ζN,2 (left)
and ψN,2 (right) at the coarsening scales N=0.25◦ (first and third rows) and N=1◦ (second
and fourth rows).
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Figure 6: Left column: distributions of the residual process ζN,2 conditioned on the precipi-
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show the regression relationship Eq. (13) for each value of N . Center column: quantile-
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Figure 7: Temporal autocorrelation functions of ζN,2 and ψN,2. Upper row: Composite acfs
across all points in the domain, for a range of coarsening scales N . The color scheme is as
in the right column of Figure 2. Lower row: Composite (solid curves) and interdecile range
(shaded band) of acfs across all points in the domain, for N = 0.25◦ and N = 1◦. The solid
grey lines show the 95% correlation coefficient confidence interval estimated as ±1.96/

√
N

with N = 216 (the raw number of degrees of freedom). The dashed grey lines indicate
the confidence ranges reducing N by a factor of 3 (left panel) or 2 (right panel) to account
approximately for the serial dependence of the time series.
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(a) Anisotropic meridional scale θ1 (in degrees) of the covariance Eq. (16) fit to ζN,2 (upper) and
ψN,2 (lower) for two coarsening scales N = 0.25◦ (left) and 1◦ (right).
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(b) Anisotropic zonal scale θ2 (in degrees) of the covariance Eq. (16) fit to ζN,2 (upper) and ψN,2
(lower) for two coarsening scales N = 0.25◦ (left) and 1◦ (right).
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(c) Temporal range θ3 (in hours) of the covariance Eq. (16) fit to ζN,2 (upper) and ψN,2 (lower) for
two coarsening scales N = 0.25◦ (left) and 1◦ (right).

Figure 9: Maps of estimated covariance parameters θ1, θ2, and θ3 for ζN,2 and ψN,2.
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Figure 10: Exponent parameter γ of the covariance Eq. (16) fit to ζN,2 (upper) and ψN,2
(lower) for different coarsening scales N = 0.25◦ (left) and 1◦ (right).
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Figure 11: Ratio of nugget parameter δ from the fit covariance Eq. (16) over the empirical
variance of the observed error process εN,2, model for ζN,2 (upper) and ψN,2 (lower) for
different coarsening scales N = 0.25◦ (left) and 1◦ (right).

46



−
4

−
2

0
2

Time

F
lu

x
 e

rr
o
r 

p
ro

c
e

s
s

ζ1o,2

Apr. 8 Apr. 9 Apr. 10 Apr. 11 Apr. 12 Apr. 13 Apr. 14

Observed error

Sampled error ζ1o,2

Rank

D
e
n
s
it
y

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

1 11 21 31 41 51 61 71 81 91 101

−
4

−
2

0
2

Time

F
lu

x
 e

rr
o
r 

p
ro

c
e

s
s

ψ1o,2

Apr. 8 Apr. 9 Apr. 10 Apr. 11 Apr. 12 Apr. 13 Apr. 14

Observed error

Sampled error ψ1o,2

Rank

D
e
n
s
it
y

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

1 11 21 31 41 51 61 71 81 91 101

Figure 12: Left: Times series of the error process ε1◦,2 at (161.9◦E,0.83◦S) (black line) and
synthetic samples (grey lines) obtained from realizations of ζ1◦,2 (upper panel) using Eq. (10)
and from realizations of ψ1◦,2 (lower panel) using Eq. (13). Right: rank histograms between
the observed error process ε1◦,2 and error process reconstructed from the samples generated
from ζ1◦,2 (upper panel) and from ψ1◦,2 (lower panel). The red error bars correspond to 95%-
confidence intervals associated with each estimated count of the histogram, the horizontal red
line corresponds to the uniform histogram expected under perfect match between observed
and simulated error process.
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Figure 13: Temporal autocorrelation functions (acf) of ε1◦,2 at (161.9◦E,0.83◦S). Black: ob-
served autocorrelation function, Grey: autocorrelation functions from synthetic samples
based on realizations of ζ1◦,2 (left) and ψ1◦,2 (right). The dashed lines correspond to 95%-
confidence intervals for a white noise process.
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Figure 14: Top panel: Total Mean Square Error (MSE), Central panel: centered MSE, Bot-
tom panel: Squared bias between the observed error process ε1◦,2 and its samples generated
from ζ1◦,2 (left) and ψ1◦,2 (right). The total MSE can be decomposed between the centered
MSE and the squared bias, in order to assess the contribution of bias and of fluctuations to
the total MSE.
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Figure 15: Normal quantile-quantile plot for ζN,2 (top) and ψN,2 (bottom) at the central
location of the three subregions: Western Pacific (left), Arabian Sea (center), and Southern
Indian Ocean (right). QQ-plots are depicted for two coarsening scales varies: N = 0.25◦

(black) and N = 1◦ (grey).
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Figure 16: Spatial correlation of ζN,2 (top) and ψN,2 (bottom) against the distance in km
for the three subregions: Western Pacific (left), Arabian Sea (center), and Southern Indian
Ocean (right) (only 50 random points are depicted). Correlations are depicted for two
coarsening scales varies: N = 0.25◦ (black) and N = 1◦ (grey).
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